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Abstract-Mean infrared radiation from a turbulent, statistically uniform medium is studied theoretically. 
A stochastic approach is used in which instantaneous temperature and concentration fluctuations are 
generated by Fourier transforming various forms of the space-time correlation function. The effect of the 
shape of the spatial correlation function on the model results is found to be negligible. We discuss first the 
influence of the spectroscopic parameters of an isolated Lorentz line on mean radiative intensities. It is 
shown that the effects of turbulence depend strongly on the energy of the lower level of the transition. Stat- 
istical narrow-band calculations are then carried out for four CO1 and four H,O bands. The contribution 
of turbulence to the mean band-integrated radiative intensity is generally greater when the hot emitting 
medium is viewed through a cold absorbing one. The influence of turbulence integral length-scale, optical 
thickness of the medium and band locations are discussed. It is also found that the turbulence contribution 
to the radiative intensity, when integrated over the entire infrared spectrum, decreases quickly when the 
mean temperture increases in the range [800-2000 K]. In the case of combined temperature and con- 
centration fluctuations, positive cross-correlations lead to an increase in the tubulence contribution due to 
temperature fluctuations alone, while negative cross-correlations lead to a decrease in this contribution. 

1. INTRODUCTION 

IN APPLICATIONS where infrared gas radiation is the 
predominant heat transfer mode, flows of gaseous 
mixtures are generally in the turbulent flow regime. 
Large flames encountered in accidental fires or off- 
shore oil and gas facilities, rocket and aircraft com- 
bustion chambers including the hot jets from these 
chambers are some typical examples. The prediction 
of such flows is most often based on a closure model 
which leads to the mean temperature i= and molar 
fraction X fields and in some cases, the mean square -/ 2 
fields T” and x’.’ as well. 

Two kinds oflradiation/turbulence interactions are 
recognized. The first is related to the influence of 
molecular and particle radiation on the properties 
of thermal turbulence [l-3]. It has been shown that 
radiative transfer acts as a dissipative process for large 
thermal eddies and tends to smooth temperature fluc- 
tuations. These effects are particularly relevant when 
turbulence dissipation due to molecular diffusion is 
small compared to the radiative dissipation (e.g. 
atmospheric applications) and will not be considered 
in this study. 

The second interaction is related to the effects of 
temperature and molar fraction fluctuations on the 
mean radiative flux from the hot turbulent mixture. 
Several studies have shown that mean radiative quan- 
tities may differ significantly from those based on the 
mean temperature and concentration fields. This is the 
result of the strong nonlinearities in the relationship 
between radiation and the instantaneous scalar fields. 
The quasi-exponential dependence of the blackbody 

intensity with temperature in the Wien region of the 
spectrum is an example of these nonlinearities. Tur- 
bulence effects in practical situations may be very 
important since fluctuation intensities can reach 
values as high as 40% in flames [4, 51. 

Faeth and coworkers have studied the infrared radi- 
ation from various turbulent flames with different 
fuels, for both luminous and nonluminous flames [b 
141. Their theoretical predictions are based on a k-E-g 
turbulence model for the calculation of the non- 
homogeneous flowfield and flame structure, and the 
use of Iaminar flamelet state relationships between 
instantaneous mixture fraction and scalar properties. 
Stochastic simulations are used to predict mean and 
fluctuating radiative intensities along several paths 
in the flame. Gaseous radiation is computed from a 
statistical narrow-band model, while soot radiation is 
considered in the Rayleigh limit. In the earlier studies 
[6-IO], the emitting gaseous column is divided into 
statistically independent homogeneous and iso- 
thermal columns having lengths equal to the local 
dissipation or integral length-scale and this treatment 
ignores the existence of spatial correlations. In more 
recent papers [l l-141, spatial and temporal cor- 
relations are considered in order to analyse the fluc- 
tuations of radiative intensities at some specified 
wavelengths. The results of these studies show that 
spectral intensities may be increased by up to a factor 
of three when turbulence/radiation interactions are 
taken into account. Measured radiative intensities 
generally fell between the predictions from meari scalar 
properties and those from the stochastic analysis. 

For similar applications, Cox [4] uses the gray gas 
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NOMENCLATURE 

C,(r) two-point/one-time autocorrelation w, discrete frequency of turbulence 
function (ensemble average) x abscissa along the transfer direction 

C,(s) one-point/two-time autocorrelation &I molar fraction of the absorbing species 
function (ensemble average) xi, xi molar fraction fluctuation. 

C(r, r) two-point/two-time autocorrelation 
function (ensemble average) 

E” energy of the lower level of a transition 
Greek symbols 

I radiative intensity integrated over a line, a 
cc(r) uniform random number 

band or the spectrum 
y(T) Lorentz line half-width at half-maximum 
7 mean line half-width inside Av 

1,. spectral radiative intensity Av 
II: blackbody spectral intensity 

narrow-band model spectral range 
6 

k turbulence discrete wave number 
mean line spacing inside Av 

0 
L mean line intensity to mean line spacing 

r.m.s. value of temperature fluctuations 

ratio inside Av 
K, spectral absorption coefficient 
A 

L length of the hot radiating column 
turbulence integral length-scale 

V radiation wave number 
M total number of discrete spatial points Q r.m.s. value of molar fraction fluctuations 
N total number of time intervals T 
P total pressure 

separation variable in two-time correlation 
functions 

Q(r) rovibrational partition function 
TAB, transmissivity averaged over Av 

r separation variable in two-point 
correlation functions 

(Pi phase corresponding to ki. 

t 

;i, 
turbulence integral time-scale 
two-point molar fraction-temperature 

Symbols 
.r,T 

correlation function 6 Fourier transform 

S(T) absorption line strength a time averaging 

to time observation (Q) ensemble averaging. 

t time 
To mean absolute temperature 
T’(s, t) temperature fluctuation 

Subscripts 
m, i discrete spatial position 

ll optical thickness at line center n,j, 1 discrete time. 

approximation and obtains the mean radiative fluxes - 
from a Taylor expansion of the product .sp, where E 
is the gas emissivity. This study shows that high order 
terms in the expansion may be predominant in prac- 
tical situations. 

For an application involving the long range detec- 
tion of an axisymmetric missile exhaust plume, Pearce 
and Vat-ma studied turbulence/radiation interactions 
in the band wings of the 4.3 pm CO2 band [15]. They 
used second order Taylor expansions of the blackbody 
intensity and the monochromatic absorption coef- 
ficient, because their turbulence intensities were rela- 
tively small. They considered first the case of an 
isolated spectral line and showed the strong sensitivity 
of the line shape and the integrated intensity to the 
energy E” of the lower level of the vibrational- 
rotational transition. Bandpass calculations were then 
carried out by using line by line computations for 
several paths through the plume. They found that 
radiance augmentation due to turbulence depends 
strongly on the region considered in the flowfield. 

Turbulence/radiation interactions have also been 
studied for the case of gaseous internal flows in order 
to predict wall-gas radiative fluxes. Song and 

Viskanta have investigated the case of a turbulent 
flame inside a two-dimensional furnace [16]. They 
invoked simplifying assumptions concerning cor- 
relation functions and gaseous radiative properties 
and solved the fully coupled reacting flow and radi- 
ation problem. Their results show that temperature 
and concentration fluctuations lead to an increase in 
radiative fluxes (up to about 80%) when the flame 
occupies a large volume fraction of the combustion 
system. In a related study, Soufiani et al. investigated 
these interactions in the case of a turbulent channel 
flow of radiating but nonreacting gas [17]. They found 
that temperature fluctuation effects on mean wall radi- 
ative fluxes are limited to about 10% in these flows, 
since fluctuation intensities, produced mainly by mean 
velocity and temperature gradients, are small in com- 
parison with those encountered in reacting turbulent 
flows. 

Finally, it is worth noting the studies of Daily [18] 
and Charpenel [I91 which are related to the effects of 
turbulence on optical measurements of temperature 
and concentration when using absorption or emission 
techniques. 

In the present paper, a theoretical study concerning 
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the interaction between turbulence and radiation in 
the case of homogeneous and isotropic turbulence is 
presented. Parametric studies in this simple case allow 
us to gain insight on the most relevant parameters 
affecting this phenomenon. Attention is focused on 
the physical representation of both turbulence sta- 
tistical properties and real molecular radiative spectra. 
We use a stochastic approach in which the instan- 
taneous temperature and concentration fluctuations 
are generated from spat&temporal correlation func- 
tions (Section 2). Results from different analytical 
forms of the correlation function are compared. In 
Sections 3 and 4, we consider the effects of tem- 
perature fluctuations alone. Radiation from an iso- 
lated spectral line is studied in Section 3 in order to 
point out the influence of spectroscopic parameters. 
The results from this section are useful both for the 
analysis of low spectral resolution results and for the 
application to optical diagnostics through turbulent 
media. Section 4 is related to molecular bands of H,O 
and COz. A statistical narrow-band model, associated 
with the Curtis-Godson approximation is used. In 
this section a distinction between the case of radiation 
directly from a statistically homogeneous hot medium 
and the case of radiation emitted by this medium and 
transmitted through a cold atmospheric medium is 
made. Finally, the combined effects of temperature 
and molar fraction fluctuations are considered in Sec- 
tion 5. 

2. INSTANTANEOUS SCALAR FIELDS 

The mean radiative flux incident on a detector can 
be obtained from the mean incident intensity by inte- 
grating over all the propagation directions. In this 
study, we consider the effects of turbulence on radi- 
ative intensity in a particular direction OS, without 
specifying the entire geometry of the system. The inter- 
section of this direction with the emitting medium 
defines a gaseous column of length L., over which 
spatial and temporal variations of temperature and 
molar fractions are to be specified. 

General method 
The scalar fields are assumed to be stationary, 

homogeneous stochastic processes, with a Gaussian 
probability density function. They are determined 
from these assumptions and the following properties : 

(T’(x, I)) = 0, (1) 

(y(X,t)T'(X+r,f+T)) = o*C(r,T), (2) 

where T’(x,t) is the temperature or molar fraction 
fluctuation around the mean value r,,, and the angle 
brackets denote an average over the ensemble of real- 
izations. C(r, T) is the space-time correlation function 
satisfying C(O,O) = 1, and 0 is the r.m.s. value of the 
scalar fluctuation. The choice of the functional form 
of C(r, T) is discussed below. As the function T’(x, t) 
is to be defined only in the range 0 ,< x < & and for 

a finite time interval 0 < I ,< to. we assume that it is a 
periodic function with periods L, and r,,. The manner 
in which ?“‘(I, t) is generated numerically from the 
above properties is an extension of the approach given 
in ref. [20] for space and time varying processes and 
is described in Appendix A. For the discrete values 
,u,, = mAx and t, = nAr, the result is 

(3) 

In this equation, M and N are such that L,y = 2MA.r 
and to = 2NAt. Zak/L,, and 2nw/t, are discrete values 
of the turbulent wave number and frequency, respec- 
tively. c is the two-dimensional Fourier transform 
of C(r,r). &,. and Bk.,v are independent, random, 
Gaussian variables with zero mean and a standard 
deviation of unity. They satisfy the conditions 
A, ,,,, = A -l. ,_,, and Bk ,,,. = -B-, ,_,,, in order to yield 
real values of T’(s, t). 

Up to this point, we are able to generate different 
transient turbulent fields by assigning to each field a 
given set of random variables Ab,,,. and B,.,,.. With 
the assumption that the stochastic process is ergodic, 
ensemble averaging is equivalent to time averaging. 
We then consider only one transient field from which 
mean radiative intensities are computed by time aver- 
aging. In practice, two sets of 2MN Gaussian random 
variables are generated (A,.,. and Bk,,,,). and the inverse 
discrete Fourier transform of 

is carried out by using a FFT algorithm. The sto- 
chastic simulation of radiative transfer is achieved 
through time iterations where instantaneous radiative 
intensities are computed for each t,, and then averaged 
until a convergent solution is reached. In this way the 
use of a space-time correlation function enables the 
statistical description of temporal variations of the 
emitted intensity, even if we are mostly interested in 
mean values. 

For computational considerations, the maximum 
wave number ~zM/L,~ is chosen such that 

in order to account for the smallest eddies which con- 
tribute to the energy power spectrum of T’(x, t). The 
required number of time realizations for convergence 
depends on the ratio A/L, (where A is the integral 
length-scale of turbulence) and on the optical thick- 
ness of the largest eddies. For integral length-scales 
which are very small in comparison with the column 
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length, practically all the allowed variations of T’(x, t) 
are found in one spatial distribution. Radiative inten- 
sity is then independent of time (as found by Cox [4]), 
provided that the large eddies are not optically thick. 
But in the case of A/L,r = 1 for instance, about 10 000 
samples are generally required for a convergence better 
than 2%. On the other hand, when the instantaneous 
value of T,+ T’(x, t) is negative, it is set numerically 
to a minimum value (100 K for temperature and 0 for 
molar fraction). The number of pairs (x,,, t,,) for which 
this occurs is sufficiently small, and this procedure 
does not modify appreciably the statistical properties 
of the field. 

The procedure described above and in Appendix A 
is similar to that used by Kraichnan [21] for turbulent 
velocity fields, and by Maradudin et al. [20] for the 
study of backscattering of light from random surfaces. 
Other authors use another strategy where the ampli- 
tudes of the velocity vector corresponding to different 
wave vectors are deterministically prescribed [22]. We 
have tested a similar approach where the random field 
is generated from the pure spatial correlation function 
C,(r) 

where (am is a uniform random phase in the range 
0 < e+(t) < 2n, and cc(t) is a uniform random number 
in the range -,/3 < a(t) < +,/3, in order to satisfy 
T’(x, f)T’(x, 1)’ = t12. This approach is less rigorous 
than the previous one (equation (3)), and does not 
account for temporal correlations. However, the 
deterministic choice of the amplitudes in equation 
(4) leads to a faster convergence of the stochastic 
simulation. Band-integrated intensities [see Section 4) 
computed from both procedures differ by only 5% in 
the worst cases of optically thick medium or for A/L, 
as high as 1, with e/r, = 0.4. Nevertheless, in the 
following we use the more general approach (equation 
(3)) in order to include both spatial and temporal 
correlations. 

Correlation functions 
The space-time correlation function C(r, z) is 

assumed to be the product of the two-point/one-time 
correlation function C,(r) and the one-point/two-time 
correlation function C,(7) 

CC-, 7) = GVX7). (5) 

This assumption is used by other authors (cf. for 
example ref. [l l]), even if there is no theoretical sup- 
port for it. In order to investigate the influence of this 
approximation, calculations were also undertaken fol- 
lowing Taylor’s hypothesis. Two cases corresponding 
to a mean flow perpendicular and parallel to the obser- 
vation direction have been considered. The function 

C(r,r) cannot be split in the form C,(r)C,(r) in 
these cases. The results show that the time-averaged 
emitted intensity computed from Taylor’s hypothesis 
(both perpendicular and parallel cases) do not differ 
significantly from that obtained by using equation (5) 
(less than 1% in the perpendicular case and less than 
2% in the parallel case, for a single absorption line). 
Equation (5) is then used in the following analysis. 
The analytical form adopted for C,(7) is 

C,(r) = exp - F 
( > 

, (6) 
e 

where t, is the integral time-scale. The particular form 
of C,(7) and the choice oft, may have an important 
influence on the temporal spectrum of the emitted 
intensities, but not on the moments of these intensities. 
On the other hand, the total lapse of time to considered 
in equation (3) must contain several integral time- 
scales in order to allow an acceptable convergence of 
the stochastic simulation. We use here to N 500t,. 

The spatial correlation function for temperature or 
concentration fluctuations generally exhibits an 
exponential decrease for intermediate values of the 
distance of separation, but it may become negative 
for higher values of r [23, 241. The only rigorous 
limitation for the choice of C,(r) is that it must have 
a real and positive Fourier transform and satisfy 
-C,(O) < C,(r) < C.,(O). In this study we use three 
analytical forms for C,(r) 

C,(r) = em-+, 0 < r < L, 

sin (nr/2A) 

(74 

Ub) 

(7c) 

= 0, 2A < r < L,r 

where A is the integral length-scale satisfying 

s 

+CO 
C,(r) dr = A. 

0 

Contrary to t,, A is a variable parameter of this study. 
The results obtained by using the above analytical 
form of C,(r) are compared and discussed in Sections 
3 and 4. Figure I shows typical correlation functions 
computed from the stochastic scalar fields as described 
above (with the ergodic hypothesis), averaged over 
10 000 time realizations. The convergence to the theor- 
etical functions is not wholly satisfactory ; however, 
the convergence of the radiative intensities is much 
better. 

3. ISOLATED LORENTZ LINE 

Before studying the effects of turbulence on real gas 
radiation in a wide spectral range, we first consider 
the case of an isolated line in order to point out the 
main parameters of the problem and to gain insight 
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FIG. 1. The three theoretical correlation functions used in 
this study (solid lines). The dashed lines are the correlation 
functions averged over 10000 time realizations for an arbi- 

trary position. A/L., = 0. I. 

concerning the interpretation of the results given in 
the following sections. The results of this section are 
also useful for optical diagnostics using the properties 
of isolated lines in turbulent media. Only temperature 
fluctuations are considered in this section and also in 
the following one, 

If  we assume that the real part of the refractive 
index of the medium is equal to 1, the instantaneous 
spectral intensity Z,. from the turbulent medium in the 
OS direction is given by 

s L, I,. = 0 tc,.(x)zfl(x) exp (-I’ rc,,(x’) dx’) dx, (8) 

shows that, at least under some conditions, deviations 
from the isothermal medium intensity are mainly due 
to the derivatives a'I~/aT', a'S/aT and (i?r~pT) 
(aS/aT) (see Appendix B). It follows from equation 
(IO) that line intensity variations with temperature are 
very sensitive to the value of E" which is then an 
important parameter in this study. This fact was 
noticed by Pearce and Varma who considered only 
relatively high values of E” in their study [ 151. 

Numerical simulations have been carried out for a 
CO absorption line centered near v,, = 2124 cm-’ 
with the average temperature To = 1000 K. The CO 
partition function was computed from the polynomial 
fit of Gamache ef al. [26] and y(T) was taken as [27] 

296 o.69 
y(T)= 0.084~ T 

( > 
cm-‘. (11) 

The varying parameters in these numerical simu- 
lations are: the ratio A/L, in the range 
l/30 < A/L, < I, E" from 100 to 4000 cm- ‘, the ratio 
0/T,, from 0. to 0.4, and the optical thickness at line 
center II = (.x~:,PS(T,)L,)/(~J(T,,)) from IO-’ to IO. 
The spectral integration of radiative intensity is car- 
ried out by using a I6 point Gauss quadrature for 
a spectral range containing more than 95% of the 
intensity of the line. 

Figure 2 shows some spectral results for O/T, = 0.4 
with two values of E" computed from the three differ- 

where the local absorption coefficient K,. and black- 
body function It vary with time and position since 
both depend on temperature. K,. is given for an isolated 
Lorentz line centered at the wave number vO, by 

K,. = x,pS( n' Y(T) 
ny'(T)+(v-v,)" (9) 

where X, is the molar fraction of the absorbing species, 
p the total pressure (in atmospheres), S(T) the line 
strength and y( 7’) the half-width at half-maximum. In 
local thermodynamic equilibrium, the line strength 
temperature dependence is given by [25] 

S(T) = WJ 7 ecr> -exp[-$(;-+)I 

I -exp ( -/2cv0/kT) 

’ I-exp (--hcv,/kT,)' 
(lo) 

In this equation, Q(T) designates the rovibrational 
partition function of the considered absorbing mol- 
ecule, E" is the energy of the lower level of the tran- 
sition, and k, h, and c are the Boltzmann constant, 
the Planck constant and speed of light, respectively. 
T, is a reference temperature. 

A Taylor expansion of the spectrally integrated 
radiative intensity 

I= Z,dv 

a 

isothermal medium at TO = 1000 K 

w 
0.0000 I I I I I 

.O 1.0 2.0 3.0 4.0 5.0 I 

I” (Wm -*.str-‘.(rrr’)-I) 

b 

FIG. 2. Spectral radiative intensity from temperature Ruc- 
tuating and isothermal media for two E” values and three 
spatial correlation functions. 0/T, = 0.4, A/t, = 0.2, 
T,, = IO00 K. The optical thickness at line center is u = 0. I 

(a) and u = IO (b). 
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0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 

FIG. 3. Relative differences between nonisothermal and iso- 
thermal radiative intensities integrated over an isolated 
Lorentz line centered at v,, = 2124 cm- ’ for different E” and 
A/L, values. u = 0.01, To = 1000 K,p = I atm, L., = 0.2 m. 

ent spatial correlation functions given by equations 
(7a-c). For an optically thin medium the mono- 
chromatic intensities are not sensitive to the shape of 
the correlation function (Fig. 2a). To the contrary, for 
an optically thick medium (Fig. 2b) and high values of 
E”, differences up to 13% are observed at line center, 
for which only a small fraction of the column con- 
tributes to the emission. However, when the intensities 
are integrated over the entire line, the differences 
remain limited to 4%. Figure 2 shows that the line 
shape may be strongly modified by temperature 
fluctuations, as noticed by Pearce and Varma [l5]. 
In addition, it appears that total turbulence con- 
tributions are negative for E” = 100 cm-’ since the 
terms containing (as/U) are negative and dominate 
in this case. Turbulence contributions are positive in 
the case E” = 4000 cm-’ and reach nearly 200% at 
line center. Relative differences between the spectrally 
integrated intensities, corresponding to turbulent and 
isothermal media, are shown in Figs. 3 and 4 for two 
optical thicknesses u = IO-* and u = IO, respectively. 
Turbulence contributions increase strongly with the 
turbulence intensity B/To, but the sign of this con- 
tribution depends on the energy E” of the lower level 
as seen above. Simple analytical calculations of 

0.2 0.4 0 0.2 0.4 0 02 0.4 0 0.2 0.4 

FIG. 4. Same as in Fig. 3 except u = IO. 

show that this sum is negative for E” < 1390 cm- ’ 
and positive beyond this value in the conditions 
rr, = 1000 K and v0 = 2124 cm- ‘. The results shown 
in Figs. 3 and 4 are in qualitatively good agreement 
with Taylor expansions given in Appendix B. 
However, this E” limit value depends on the centerline 
position v0 and decreases when v,, tends to the value 
which maximizes a’l(10/i3T’(T,). From these con- 
siderations, turbulence effects are expected to be 
higher in the spectral regions where most of the 
absorption lines start from high rovibrational levels, 
as is often the case in band wings. The effects of 
turbulence structure (A/L,) are more noticeable in the 
case of optically thick media, but these effects remain 
small in comparison with those of E” and O/T,. 
Finally, it is worth noting that the relative differences 
decrease slightly when the optical thickness increases. 

4. NARROW-BAND MODEL CALCULATIONS 

Radiative properties of CO, and H,O, averaged 
over spectral ranges of width Av = 25 cm-‘, are 
modelled here using a statistical narrow-band model. 
Absorption lines are assumed to be randomly located 
inside Av and their intensities obey an exponential- 
tailed-inverse distribution law [28]. It was shown that 
this model leads to the best agreement with line by line 
calculations for CO2 and Hz0 [29]. The temperature 
dependent parameters of this model are deduced from 
high temperature line by line calculations [30, 311. 
If  we assume that the blackbody intensity remains 
constant inside Av, the instantaneous radiative inten- 
sity I&,., averaged over Av, is given by 

If(x) 2 (x, L,J dx, (12) 

where T~,,(x, L,) is the transmissivity of the non- 
isothermal column (x,L,J averaged over Av. This 
transmissivity is computed by using the Curtis-God- 
son approximation which has been studied elsewhere 
[32, 291. We have investigated four CO2 absorption 
bands and four H,O bands for which the minimum 
and maximum wave numbers are given in Table I. In 

Table I. Wave number limits of four CO? and four Hz0 
bands considered in this study 

Band 
number Gas 

min max 
(cm-‘) (W (cm-‘) (fim) 

co2 475 21.052 1050 9.534 
co* 2050 4.878 2425 4.124 
co2 3400 2.941 3800 2.631 
co* 4800 2.083 5175 1.932 
Hz0 I50 66.666 1075 9.302 
H,O 1100 9.091 2300 4.348 
Hz0 2900 3.448 4200 2.381 
Hz0 4900 2.041 5700 1.754 
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all computations, we consider H20-N, or C02-NZ 
mixtures with the following conditions : To = 1000 K, 
~~~~~ = 0.1 or xco, = 0.1, p = 1 atm, and L., = 1 m. 
The other parameters are A/L,, which is varied in the 
range (l/30, I), and 0/T, in the range (0, 0.4). On 
the other hand, we distinguish between the case of 
radiation directly from the hot turbulent medium, and 
the case of radiation emitted by this hot medium and 
partially transmitted through a cold homogeneous 
and isothermal medium. The first case is considered 
in order to simulate some typical heat transfer appli- 
cations (e.g. furnaces or combustion chambers for 
propulsion), while the second case is related to tele- 
detection applications or accidental fire radiation 
transmitted through air. The cold column is 100 m 
long at 300 K and the absorbing gas molar fractions 
are xco, or x~,~ = 0.02. 

Figures 5 and 6 show low-resolution spectral inten- 
sities for the 4.3 pm CO1 band and the 2.7 /*rn H,O 
band, respectively, with the cold column (Figs. 5(b) 
and 6(b)) and without the cold column (Figs. 5(a) 
and 6(a)). Results corresponding to temperature fluc- 
tuating hot media with O/T,, = 0.35 and A/L, = 0.2 
are compared in these figures to those corresponding 
to isothermal media. In addition, results from the 
three analytical forms of the correlation function are 

0.060- 
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0.040- 

o.ozo- 
I 

>’ 
0.000, , / ( , ) , , , , , , , , -0-- 

2100 2200 23c4 v (cm-‘) 

La” wm -*.stT-‘.(m-‘)-‘) 
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0.040. 

0.020~ 
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FIG. 5. Radiative intensity averaged over 25 cm-’ in the 
4.3 pm CO, band, computed from three spatial correlation 
functions: (a) hot medium alone with L, = 1 m, 
x’co, = 0.1, p = I atm, To = 1000 K, A/L, = 0.2; (b) the 
same hot medium is viewed through a cold isothermal 
medium with L = 100 m, x-co, = 0.02, p = I atm, and 

T= 300K. 

La. (W.m -2.str-'.(m-')-I) 
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I*, (W.m-*.str-‘.(m -‘)-‘I 

b 
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FIG. 6. Radiative intensity averaged over 25 cm-’ in the 
2.7 pm Hz0 band, computed from three spatial correlation 
functions: (a) hot medium alone with L, = I m. 
sulo = 0.1, p = 1 atm, T, = 1000 K, A/L, = 0.2; (b) the 
same hot medium is viewed through a cold isothermal 
medium with L = 100 m. snlo = 0.02, p = I atm, and 

T=300K. 

compared. Radiative intensities are increased by a 
factor up to three in some spectral regions when tem- 
perature fluctuations are accounted for. In tele- 
detection situations, radiation at band centers is 
totally absorbed by the cold medium and the only 
significant intensity remaining occurs in band wings. 
These regions generally contain many absorption lines 
starting from high energy levels (hot lines) with small 
intensities at low temperature. Turbulence effects are 
expected to be the most important for these lines, as 
discussed in the previous section. On the other hand, 
differences up to 5% are found when different cor- 
relation functions are used in the low-resolution com- 
putation. As for the study of an isolated line, the 
greater differences are obtained in the optically thick 
parts of the spectrum. The results in the teledetection 
situation are nearly insensitive to the shape of C,Y(r). 
In all cases, the integrated intensity over the band is 
affected by less than 3.5% when the shape of C,(r) is 
changed. All the following calculations are carried out 
by using the exponential shape of C’Jr) (equation 
(W. 

Relative differences between radiative intensities 
integrated over the whole band computed with and 
without turbulence effects are shown on Fig. 7 for 
CO, bands, and Fig. 8 for Hz0 bands. Results cor- 
responding to different A/L,r values are illustrated in 
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FIG. 7. Relative differences between nonisothermal and isothermal band integrated radiative intensities for 
CO, bands. - hot turbulent medium alone with L, = I m, .x- co?,= 0.1, p = I atm, T, = 1000 K. ---- 
the same hot medium viewed through a cold isothermal medium with L = 100 m, scol = 0.02, p = 1 atm, 
and T= 300 K. Wave number limits for these bands are given in Table I. + A/L, = 1, 0 A/L,r = 0.2, 

0 A/L, = 0.033. 
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FIG. 8. Relative differences between nonisothermal and isothermal band integrated radiative intensities for 
H20 bands. - hot turbulent medium alone with t, = I m, xn o = 0.1, p = 1 atm, IF, = 1000 K. 

--- the same hot medium viewed through a cold isothermal medium with L = 100 m, xHp = 0.02, 
p = I atm, and T = 300 K. Wave number limits for these bands are given in Table 1. + h/L, = 1, 

Q A/& = 0.2, IJ A/L, = 0.033. 
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these figures. Turbulence contributions increase gen- 
erally with B/T,, but under some conditions, tem- 
perature fluctuations may lead to a small decrease in 
the radiative intensities (e.g. the first CO, band). This 
may be easily explained by the spectral location of the 
band for a given temperature. In fact, the maximum 
of #/aT occurs near v/T = 2.66 cm-’ K- ‘, and 
d'It/dT' is maximum for v/T = 3.79 cm- ’ K- ‘. For 
the CO2 band centered near 650 cm-‘, variations of 
blackbody intensity with temperature are quasi-linear 
and the nonlinearities of line intensity variations play 
the predominant role in turbulence effects. However, 
except for the ‘far-infrared’ bands, turbulence leads 
to an increase in the integrated radiative intensities, 
reaching about 220% in the case of a hot medium 
alone and 370% in the case of a hot medium viewed 
through a cold one, for a turbulence intensity 
e/T, = 0.4. The increase in radiative intensities in the 
case of teledetection situations is practically two times 
greater than that observed for the hot medium alone 
for the bands 2,3,7 and 8. But this conclusion cannot 
be generalized in all conditions since this depends on 
the spectroscopic parameters of the lines constituting 
the considered band. 

On the other hand, it is seen from Figs. 7 and 8 that 
the integral length-scale of turbulence has an influence 
in the spectral regions where the medium tends to be 
optically thick (e.g. the CO2 band at 4.3 pm), other- 
wise, temporal and spatial variations act in a similar 
manner, as discussed for an isolated Lorentz line. 
Figure 9 shows the effects of turbulence on the emitted 
intensities, integrated over all the spectrum in the case 
of a hot column alone, and containing CO2 or H20. 
Relative differences with the isothermal medium 
intensities are plotted for different values of the mean 
temperature and molar fraction, for the conditions 
A/L, = 0.2 and 0/T,, = 0.4. It is shown that turbulence 
contributions decrease quickly when the mean tem- 
perature increases from 800 to 2000 K. This is due 
mainly to the fast decrease of the integrated second 
derivative 

.s 

+m 

I;dv 
0 

with temperature. For a given turbulence intensity, 
temperature fluctuation effects are smaller for high 
temperature flames. In addition, integrated turbulence 
effects decrease when the optical thickness decreases. 
This may be understood in terms of the combined 
effects of radiative properties and blackbody vari- 
ations with temperature. In fact, the cross second 
order derivatives, which have a negative contribution 
to the averaged intensity, decrease when the optical 
thickness increases. 

The stochastic simulation used in this study also 
enables a statistical description of the fluctuations of 
the radiative intensity around its mean value. Never- 
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FIG. 9. Relative differences between nonisothermal and iso- 
thermal infrared integrated radiative intensities, as function 
of the mean temperature and molar fraction J!,~ = I m, p = 
I atm, B/T,, = 0.4, A/L,T = 0.2. CO?-N2 mixtures (a) and 

H+.XN2 mixtures (b). 

theless, the power spectral density of these fluc- 
tuations depend mostly on the temporal correlation 
function used, while the different moments of these 
fluctuations do not. Figure 10 shows the standard 
deviation of the fluctuations of the spectrally inte- 
grated intensity around its mean value for C02-N2 
mixtures as a function of the mean temperature and 
molar fraction. This standard deviation increases with 
the optical thickness, since only a small part of the 

FIG. IO. Standard deviation of the fluctuation of theinfrared 
integrated radiative intensity for COZ-N, mixtures as func- 
tion of the mean temperature and CO2 molar fraction. Lx = 

I m,p = 1 atm, B/T, = 0.4,A/L, = 0.2. 
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column (with a large fluctuation of its mean tem- 
perature), contributes to the emitted radiation in the 
case of an optically thick medium. For an optically 
thin medium the standard deviation depends mostly 
on the number of large eddies contained in the column 
and increases with the ratio A/L.,. It is also worth 
noting that, in the conditions of Fig. 10, the standard 
deviation remains as high as 50% when the mean 
temperature increases up to 2000 K, although the 
turbulence contribution to the mean intensity 
becomes very small. 

5. MOLAR FRACTION FLUCTUATIONS 

We will first consider the case of molar fraction 
fluctuations in an isothermal medium and then the 
general case of combined molar fraction and tem- 
perature fluctuations. 

For an isothermal medium, the nonlinearity in the 
relation between the absorption coefficient and the 
emitting gas molar fraction is only due to the vari- 
ations of Lorentz line-widths with different collision 
partners. These variations generally lead to very small 
changes in the emitted radiation since line intensities 
are unmodified. On the other hand, radiative intensity 
from an isothermal and homogeneous medium may 
be written, with the narrow-band model used here, as 

x((1+5yy2-1)1], (13) 

where /;, 7 and 8 are the model parameters [32]. The 
nonlinearities due to the exponential term remain 
limited to a few percent when considering the emitted 
radiation from an isothermal medium with fluctuating 
x, values. This is not the case for radiation transmitted 
by a concentration fluctuating medium. 

These small effects of molar fraction fluctuations 
alone have been tested numerically for the CO2 and 
H70 bands given in Table 1. Relative variations in 
band-integrated radiative intensities are limited to 
about 3% for concentration fluctuation intensities as 
high as 0.35. 

In the case of combined concentration and tem- 
perature fluctuations, Song and Viskanta [16] show 
that turbulence effects depend upon whether con- 
centration and temperature variations are positively 
or negatively correlated. The signs and amplitudes of 
the cross-correlation depend on the application under 
consideration, but we may expect that in combustion 
applications the main contribution to emission is due 
to combustion products at elevated temperatures. 
Concentration and temperature should then be posi- 
tively correlated. We investigate here both cases of 
positive and negative perfect cross-correlations. The 
spatial autocorrelation functions of molar fraction 
and temperature fluctuations are assumed to obey the 

same exponential decrease (equation (7a)) with the 
same integral scale A. The cross-correlation function 
is then given by 

(14) 

where 0 is the r.m.s. value of the molar fraction fluc- 
tuations, and the signs + and - correspond to posi- 
tive and negative perfect cross-correlations, respec- 
tively. Computations are carried out in the same 
conditions as in the previous section (column length, 
mixtures, and mean temperature and molar fraction 
values), with D/X, varying in the range (0, 0.35). 

Figure 11 shows the relative differences between 
band integrated radiative intensities computed with 
and without scalar fluctuations for the 4.3 pm CO, 
band and the 2.7 pm H,O band. Both positive and 
negative correlation cases are illustrated in this figure. 
It is shown that positive correlations lead to a sig- 
nificant increase in the turbulence contribution to 
radiative intensities, while negative correlations tend 
to decrease its effect. In fact, in the positive correlation 
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FIG. 11. Relative differences between band integrated radi- 
ative intensities for the 4.3 pm CO2 band (a) and for the 2.7 
pm HZ0 band (b), computed with and without temperature 
and molar fraction fluctuations. The hot medium with L, = 
~m,xco,orx,p=0.1,p=1atm,T~=1000K,A/~,=0.2, 
is viewed through a cold isothermal medium with L = 
100 m, xco, or >HZo = 0.02, p = 1 atm, and T= 300 K. 
- negatrve cross-correlations, ---- positive cross- 

correlations. 
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case the hot regions of the radiating medium contain 
more emitting gases and this tends to emphasize the 
nonlinearities of Planck’s function and line intensity 
variations with temperature. Results similar to those 
shown in Fig. I I are found for the eight CO? and Hz0 
absorption bands, with or without a cold absorbing 
medium, and for any value of A/L.Y in the studied 
range. 

Finally, some numerical simulations were carried 
out for noncorrelated temperature and concentration 
fluctuations. The results show that concentration 
fluctuations have a very small effect on radiative inten- 
sities in this case (less than 4%). 

6. CONCLUSIONS 

We have performed a theoretical study concerning 
the effects of temperature and concentration fluc- 
tuations on mean radiative intensities from a hot, 
turbulent, statistically homogeneous and stationary 
gas mixture. The fluctuating fields have been gen- 
erated from space-time correlation functions and 
realistic representations of molecular gas absorption 
spectra have been used. We have shown that the con- 
tribution of turbulence to the mean radiative intensity 
is not very sensitive to the shape of the spatial cor- 
relation function. It does not depend on the integral 
length-scale of turbulence if the medium contains 
several optically thin eddies. For a given absorption 
band, the most influential parameters are the fluc- 
tuation intensities, band spectral location (with 
respect to a given value of the men temperature), 
spectroscopic parameters of the absorption lines con- 
stituting the band, and to a lesser extent the integral 
length-scale of turbulence and the medium opacity. 
Mean radiative intensities are generally increased 
when turbulent fluctuations are taken into account, 
but the turbulence contribution may be negative for 
some far-infrared bands. On the other hand, it is 
found that the effects of turbulence are greater when 
the hot emitting medium is seen through a cold 
absorbing one, since nonlinearities due to line inten- 
sities are generally stronger for the ‘hot lines’ located 
in the band wings. The contribution of turbulence to 
the intensity, integrated over all the infrared spectrum, 
decreases quickly when the mean temperature 
increases in the range 800 < To Q 2000 K. Con- 
centration fluctuations in an isothermal medium have 
small effects, however, when they are combined with 
temperature fluctuations, the changes in radiative 
intensity due to temperature fluctuations alone are 
significantly increased for positive cross-correlations 
and decreased for negative correlations. 
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APPENDIX A: GENERATION OF THE 
STOCHASTIC SCALAR FIELDS 

The formulation given in this appendix is an extension of 
the work of Maradudin et a/. [20] for the case of space and 
time varying stochastic processes. The scalar field T’(x, t) is a 
Gaussian, statistically homogeneous and stationary random 
field, and is described by the space-time autocorrelation func- 
tion C(r, T) (equation (2) in the full text). For the discrete 
point (q = kAx, I, = /AI), T’(x,, I,) is first written in the 
form 

T’(Xk, f , )  = 0 +f +f wii.jXt+k.j+lr (A.11 
,=-mj=-m 

where Xi., are Gaussian, independent, random variables with 
zero mean and a standard deviation of unity. The weights 
Wi.j are to be prescribed deterministically from the statistical 
properties of T’(x, I). From equation (2) and the properties 
of Xi.,, we have for any pair (m, n) 

C(mAx, nA[) = y +f wi,, H’~-,,/-. 64.2) 
i=-mjz-m 

The right-hand side of this equation can be approximated 
by the continuous integral 

+m cm 
ti(k, w) = ss W(x, t) e-i(kx+W dxdl. (A.4) 

--oc -cc 

The Fourier transform of equation (A.2) leads then to the 
possible values of #‘(k, ~8) 

Ct(k, uj) = Ax”2A~“2?‘2(k, w), (A.5) 
where e(k, w) is the Fourier transform of C(r, r). The weights 
W,,j can then be obtained by the inverse Fourier transform : 

64.6) 
The scalar field TI(xkr t,) may be computed from equations 
(A.1, A.6), but it is advantageous to use a discrete Fourier 
transform in order to exploit the fast speed of FFT algo- 
rithms. If  we assume that the function C(r, T) is periodic with 
periods L, and I, with & = 2MAx, r,, = 2NAr, and define 
the discrete Fourier transform as 

and the inverse Fourier transform 

the relation between the discrete and continuous Fourier 
transforms, for sufficiently high values of M and N is 

If  we replace Wi.j and Xi,, by their decomposition (A.8) in 
equation (A. I) and use the relation 

el”+“” = &k+k’), (A.lO) 

where 6 denotes the delta function, we obtain after some 
manipulation 

M-l N-l 
T’(x.,, I,) = 0 1 C ~t_k,_~~k.re2in(mk/2M+nlu/2N), 

k=-Mw-N 
(A.ll) 

with &,.+ = ak,,. from equation (A.5). Equations (A.5) 
and (A.9) lead to 

M-l N-l 
T’krl, 1”) = 0 1 c 

k=-M w--N 

&,.w may be decomposed into real and imaginary parts 

k... = i&,.+ i&J, (A.13) 

with 

x X,cos[2n(&+ $1 = A.4 ._“I, (A.14) 

+m +m 

X 
s s 

W(x, I) W(x-mAx, f-nAl) dxdf. (A.3) 
--ou -03 

g,., = - 1 L Mf’ Nf’ 
JM fi I--MI---N 

Following the Wiener-Khinchin theorem (see for example 
ref. [33]), the Fourier transform of the double integral on 
the r.h.s. pf equation (A.3) is equal to the power spectral 
density 1 W(k, w)]’ of W(x, I), where @‘(k, w) is the Fourier 
transform of W(x, f) : 

x X,,,sin[2n($+g)]= -Bmk,-,. (A.15) 

As the Fourier transform of a Gaussian function is itself 
Gaussian, the sequences At,+ and B,,, are themselves Gaus- 
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sian. independent, random variables with zero mean and a 
standard deviation of unity. Equation (A.12) leads to finally 

x (A,,,,+iB,,,,,)~“’ 

( > 

$!, F e2in(mk/2M+nnj2N)~ (A.16) 
.r 

APPENDIX 6: TAYLOR EXPANSION IN SOME 
LIMITING CASES 

We consider here radiative intensities, integrated over an 
isolated Lorentz line, in two asymptotic cases of the ratio 
A/L,,. The case A/L,v >> I is not physically realistic since the 
meaning of A itself is not clear. However, we can assume 
that this case corresponds to an isothermal medium with a 
uniform temperature varying only in time. In the case 
A/L, << I, the column of length L, contains many large eddies 
and the instantaneous radiative intensity is practically inde- 
pendent of time, as long as the optical thickness of a column 
of length A is not too large. In both cases, we consider a 
uniform concentration field and study temperature Ruc- 
tuation effects on radiative intensities by using a second order 
Taylor expansion. 

BI:A/L,>> I 
Radiative intensity resulting from an isolated line and an 

isothermal medium may be written 

477 = J +1 {I-exp(-tc,.L,))1~(T)dv = It”(T)W(S(T)), 
- 7r 

@.I) 
where the blackbody intensity 1: is assumed to be constant 
over the narrow spectral range around vO, inside which k, 
differs significantly from 0. The equivalent line width 
W(S(T)) is given by 

W(S(T)) = 
J 

+- {1-exp(-rc,L,)}dv. (B.2) 
-m 

The decomposition of T into its mean and fluctuating parts 
T = T,+ T’, and the introduction of the probability density 
function p(T) of T’, lead to the time averaged intensity 

J 
+Z p= p(T’)W(S(T,+T’))I%(T,+T’)dT’. (B.3) 

-m 

If we neglect line-width variations with temperature in com- 
parison with those of line intensity, a second order Taylor 
expansion of (B.3) yields 

(4 (b) 

Cd) 
where 19 is the r.m.s. value of T 

J +a 82 = p(T’)T”dT’, (B.5) 
-m 

and the right-hand side of equation (B.4) is taken at T = To. 
Terms (a) and (b) in (B.4) may be positive or negative 
depending on the signs of aS/dTand a*S/aT’. (c) is a negative 
term for a Lorentzian line and (d) is positive. 

B2: A/L, << I 
The instantaneous radiative intensity at the point 0 is given 

by 

e-w 

with the equivalent line-width 

w(-~) = s_‘s (;:-p(- [‘fc.(.+ix.>~d”. (B.7) 

If  we use the Curtis-Godson approximation, the derivative 
a W(x)/ax may be written (321 

aW(x) 

with 

- = x,S(x)y(.u,(.r),p(.r)), as 0-w 

x (s) = 4w~b) 
c Zay,(.x) ’ 

u(x) = x,px. 

S,(x) = & ov .r,pS(x’) ds’, -s 
I = 

Y,(X) = ~ J 44Ux) 0 
.r,pS(x’)y(x’) dx’, 

p(.u) = y(l) 
Yr t-4 ’ 

and 

m,, PI = (2-P) g (x.1 + (p- 1)F(xA 
e 

where F(x;) is the Ladenburg-Reiche function [32]. 
I f  we again neglect line width variations with temperature 

in comparison with those of line intensity (p(x) = l), equa- 
tion (B.6) reduces to 

J L. I= (B.9) 
0 

x,PS(X) g (x,(4)I:J4 da-. 
E 

A second order Taylor expansion of x.(x) leads to 

x;(x) = g ; S(x’) dx’ = x0(x) +a(x) +/3(x), 
J 

(B. IO) 

with 

x,-,(x) = zxS(T,), a(x) = ?!f 
li 

J 

dS 
2nY Cl 

T’(x’) dTdx’, 

.’ T’2(x’) d’S 

J 
- z dx’. 

0 2 dT 

Replacement in equation (B.9) and then expanding S(x) and 
$(x) gives L. 
I- I(T,J = XJJ J I[ 0 

S(To)~+I:o(To)~T T’(x) 1 
aZP 

+ +S(T,,)$ +Ifo(To)$ 1 I T 

x + [a(x) +/J(x)] $(x0, + . . (B. 11) 
c 

At this point, we may consider two limiting cases : 
(i) In the weak absorption limit, W(x) is proportional to 

S(x) and dF/dx,(x.(x)) is equal to I. The difference I- I(T,,) 
is then proportional to 

02 as aIt0 a2P 
T 2~~+~#-o)~+S(G)~ > 1 (B. 12) 

where 0 is the spatial T’ r.m.s. value. Radiative intensity is 
practically independent of time in this case. 

(ii) As discussed by Kabashnikov and Kmit [34], the pro- 
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duct KJI is a relevant parameter since it determines the 
optical thickness of a large size eddy. In the case 

K, ‘” I\ = xm~s(To) A << 1 
can be used and we find again one term of (I-I(T,)) pro- 

v  
portional to the sum given in (B. 12). 

In the opposite limit (.r,pS(T,)/xy)A >> I, the major con- 
tribution to radiative intensity is due to a column with a 

radiative intensity can again be assumed to be time inde- length equal to a small fraction of A. Intensity deviations 
pendent. In addition, significant variations of the function from I( TO) result more from temporal temperature variations 
F(s,) and its derivatives require several integral length-scales. than spatial ones. We may expect in this case a similar 
The approximation behavior as that found for A/L, >> I. 


